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ABSTRACT. This paper constructs two classes of models for the quantum correlation 
experiments used to test the Bell-type inequalities, synchronization models and prism 
models. Both classes employ deterministic hidden variables, satisfy the causal 
requirements of physical locality, and yield precisely the quantum mechanical statistics. 
In the synchronization models, the joint probabilities, for each emission, do not factor 
in the manner of stochastic independence, showing that such factorizability is not 
required for locality. In the prism models the observables are not random variables 
over a common space; hence these models throw into question the entire random 
variables idiom of the literature. Both classes of models appear to be testable. 

1. I N T R O D U C T I O N  

1 want to call attention to the possibility that the quantum mechanical 
statistics, found in the various correlation experiments devised to test 
the Bell-type inequalities, may be accounted for by means of statisti- 
cal models of the experiments that are local and realistic. (This is the 
terminology of Clauser and Shimony (1978). The phrase "local hidden 
variables" is more commonly used.) Despite the various and some- 
times elegant derivations of the Bell inequalities, which conflict with 
the quantum mechanical statistics, the possibility for such local and 
realistic accounts arises in two ways. First, as I pointed out several 
years ago (1974), the various derivations of these inequalities invari- 
ably rely on background assumptions beyond those of realism and 
locality. Hence it may be possible to build local and realistic models 
based on different background assumptions. Second, the application 
of the Bell results to real experiments always involves special 
assumptions about the experimental processes. Hence different 
assumptions may undercut the inequalities while remaining within the 
framework of locality and realism. The "conspiratorial selection" 
model proposed for the photon correlation experiments by Clauser 
and Horne (1974) (and quickly rejected by them as "unnatural") 
exploits this second way. 

My purpose here is to outline two classes of models, prism models 

Synthese 50 (1982) 279-294. 0039-7857/82/0502-0279 $01.60 
Copyright 0 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A. 



280 A R T H U R  F I N E  

and synchronization models, which are local and realistic and which, 
nevertheless, by taking advantage of the two indicated ways (respec- 
tively), yield the quantum mechanical statistics. I offer these models 
in a Popperian spirit, that is, as conjectures to be further elaborated, 
criticised, and tested. I hope that some of the workers in this area 
who find the Bell results compelling, if not conclusive, will find these 
models an interesting enough challenge to merit response. 

2. B A C K G R O U N D  A N D  T E R M I N O L O G Y  

The ideal sort of experiment outlined in Clauser and Horne (1974) 
seems broad enough to encompass the various real experiments 
performed or contemplated. It consists of a source that emits two- 
particle systems, where each composite system is in one and the same 
"singlet" state q~. The "particles" (I shall refer to them as A and B) 
are emitted in opposite directions (these define the A-wing and the 
B-wing of the experiment). In each wing there is an analyser that may 
be set in various positions. It is convenient to take these positions as 
co-planar angles, relative to some fixed direction, in the plane trans- 
verse to the "path" of the particles. The analyser is followed by a 
detector which, if triggered, will count the presence of a particle of 
the sort emitted by the source. (I speak here of "particles" and their 
"paths" and below of "particles passing an analyser and being detec- 
ted". In the case of photons - or bosons more generally - this 
language and imagery is out of place. It is a convenient metaphor, 
however, and I use it for that reason and in the belief that it does not 
mask any objectionable features of the models.) 

The models I shall propose are not designed as general accounts of 
spin or polarization and their measurements, or the like. They are 
designed to account for the statistics of experiments, like that outlined 
above, in the following more restrictive sense. Given the detailed plan 
for an experiment (already run or contemplated) - that is, the specific 
geometry of the experimental arrangement, the sequence of analyzer 
positions and the nature of the source - the models postulate a particular 
statistical distribution of the particle-pairs that gives rise to the quantum 
mechanical probabilities for the experimental outcomes. Thus what I 
call "models" are perhaps better thought of as model schemas that 
produce specific statistical models for particular experimental designs: 
feed the design into the schema and out comes a model of the 
experiment. 
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The experiments designed to test the Bell inequalities involve 
frequency measurements for only two distinct relative orientations of 
the analyzers. They employ orientations of the A-analyzer in two 
(generic) positions A1 and Az, and orientations of the B-analyzer in 
two (generic) positions B1 and Bz, such that if 0ij is the magnitude of 
the angle between the i th position of the A-analyzer and the j,h position of 
the B-analyzer then 

011 = 021 = 02z= 0 and 012= O'S O. 

The design and implementation of such an experiment then involves 
fixing the relative orientations 0 and 0' (e.g., for the photon cor- 
relation experiments one wants 0 ' =  30 = 3~r/8 for the most severe 
test), and then producing a number of orientations for the A-analyzer 
to correspond to its first position, a number of orientations for its 
second position - and similarly for the two generic B positions - 
which give the relative orientations 0, 0' as prescribed. Thus I shall 
speak of "one of the first positions of A"  and "one of the second 
positions of B "  (etc.), where I refer to a relative orientation of 
magnitude 012 = 0' (etc.). 

I shall assume that the observed statistics in such experiments 
approximate the probabilities of quantum mechanics derived from the 
composite state function O, and which I designate as follows, for 
i = 1 , 2 ; ] = 1 , 2 .  

PAl = the probability for a count in the A-wing when the 
A-analyzer is set in one of its i th positions. 

PBj = the probability for a count in the B-wing when the 
B-analyzer is set in one of its jt h positions. 

PAIBj = the probability for a coincidence count when the 
A-analyzer is set in one of its i t h  positions and the 
B-analyzer is set in one of its ]th positions. 

In the usual cases of interest one has, from the symmetry of the 
composite state O, that 

PAi = 1/2= Ps~ for all i and j, and that PA,B1 = PA2BI = 
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PA2B2 = Po and PA~B2 = Po' where 0 - Po <- 1/2, 0 -< Po, <- 1/2 
and P0# Po'. 

I shall assume these relations here, although the reader will be able to 
see how to modify the proposed models in cases where such sym- 
metry considerations do not apply. 

To satisfy the requirement of realism (i.e., of hidden variables), 
suppose that the particle pairs emitted by the source come in various 
types h, where )~ ranges over some set L of real numbers and is 
distributed according to some (normalized) continuous density func- 
tion p. The particles in a pair of type h - which I shall refer to as 
being themselves of type h - will be supposed already to possess 
certain properties that dispose them either to pass an analyzer set in 
certain positions and then to be detected, or not. Moreover, to satisfy 
locality, suppose that this disposition applies to each particle in- 
dividually, without regard to the circumstances of the other particles 
whether of the same or of different types. 

So far it may appear that I have merely redescribed the standard 
framework of (deterministic) local hidden variables, as discussed in 
the Bell literature. I have, however, been careful not to include an 
assumption implicit in that literature, namely, that each particle can 
respond to the analyzer detector assembly in its wing when the 
analyzer is set in any position whatsoever. The form this assumption 
generally takes is to suppose that the probability to be detected when 
the analyzer is set in a given position is well-defined, for each particle 
and for each position. If one thinks of probabilities realistically, 
however, then they should be grounded in physical properties. Where 
the requisite physical properties are not present, no question of 
probability arises - not even probability zero. (Thus one would not 
talk about the probability for a liquid to be harder than a gas, nor 
would one say that such a circumstance has probability zero.) Since 
the types k code for certain physical properties, one can make them 
code as well for those properties that make a particle suitable for 
certain measurements (and not others). 

Thus for each of the generic analyzer positions A~, Bj associate the 
set o-(A~), ~r(Bj) consisting of those types ~ which are suitable for the 
designated measurement in this position. That is, 

he~r(A~) iff there is some probability (perhaps zero) that an 
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A-particle of type A will pass an A-analyzer  set in one of the 
i th positions and then be counted.  

(Similarly for cr(Bj).) So if A~o-(A~), then ascribing a probability for an 
A-particle of type A to pass an A-analyzer  set in one of its i th 
positions and then to be detected is, as in the illustration about liquids 
being harder than gases, to commit  something like a category mistake. 
Hence  I shall call ~r(Ai), cr(Bj) the category of Ai, Bj. 

3. P R I S M  M O D E L S  

The Bell literature has supposed that the category for each and every 
measurement  is one and the same set, the whole A-space L. Arguing 
from this assumption of one common category, these authors find that 
the statistics for  certain correlated systems cannot  be generated by a 
local and realistic model. Just as Occam's  Razor cautions that it is 
vain to do with more what can be done with less, so Karl Menger 
(1960) dubs a "prism principle" the opposite maxim, that it is vain to 
try to do with fewer  what requires more. It would appear that local 
and realistic ways of generating the statistics for  correlated systems 
require more than one common category. Thus I call such ways prism 
models. 

The category of a measurement  specifies for  which types of 
particles the measurement  is suited. The particular measurement  
outcome,  for  a suitable particle, is then fixed by the properties 
encoded in the type of the particle. One can exhibit this encoding by 
defining, for suitable particles, a function that tells how the particles 
are going to respond to measurement.  Thus introduce response func- 
tions A~(A), Bj(A) whose significance is as follows. For Aecr(Ai), 

A~(A) = 1 iff an A-particle of type A will produce a count  in 
the A-wing when the A-analyzer  is in one of its 
ith positions. 

Ai(A) = 0 iff Ai(A) ~ 1 (and AE~r(Ai)). 

A similar significance attaches to the B~(A) response functions. 
In the standard Bell literature these response functions are defined 
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for all h. They then become random variables with respect to the 
density p. Bell and others suppose that the correlation statistics 
should be derived from the joint distributions of these random vari- 
ables, and the various inequalities show that this project cannot be 
carried out satisfactorily. It is this framework of random variables 
and their joint distributions that I have criticized (Fine, 1974) 1. This 
apparatus is avoided in the prism models because the response 
functions are defined only on the corresponding categories and hence 
not for all h. Thus the response functions are not random variables 
and there is no question of getting out the correlation statistics from 
their joint distributions, since these latter need not be well-defined. 
How, then, are we to compute the probabilities for single and coin- 
cident counts? 

The answer seems clear enough. The probability for a certain 
measurement result must be the probability that a system will 
produce that result, given that the system is of a category suited to 
the measurement. Thus prism models should generate the quantum 
mechanical probabil~ties as conditional probabilities, conditional on 
the various categories of measurements. Specifically we require that 

Phi = Prob[Ai(h) = llhecr(Ai)], 

PRj = Prob[Bi(h) = l[hecr(Bj)], and 

PAl% = P r o b [ A i ( h  ) = Bi (h  ) = l lhecr(Ai)  (3 cr(Bj)]. 

Using the h-density p we can rewrite these in standard fashion as 
ratios of integrals. 

It remains to show that there exist prism models reproducing the 
quantum probabilities as above. In fact, there are many such models. 
Here, I want to outline two. The first is, perhaps, the most simple and 
least interesting. I call it the m i n i m a l  model .  

To construct the minimal model, let the range L of h be the closed 
interval [0, 4] and suppose that h is distributed uniformly there; i.e., 
that p(h)= 1/4. Let the categories be assigned as follows: o'(Al)= 
[0, 2], or(A2) = (2, 4], or(B1) = [0, 1) U (2, 3] and tr(B2) = [1, 2] U (3,4]. 
(Note that the categories corresponding to incompatible measure- 
ments - AI, A2 and B1, B2 - are disjoint. That is the root idea of the 
mimimal model.) Next, consider step functions f, g~ defined on [0, 1] 
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as fol lows.  

~ l , 0 - < x - <  1/2 
f (x)  = [0, l / 2 < x - <  1 

and 

f l, O<_x<<_P, g,(x) = O, P ,  < x <- 1/2 
1, 1/2 < x <- l - P4, 
0, 1 -P ,~  < x _ <  1 

for  ~ b = 0  or ~b=0 ' .  
No t i ce  that  

and 

1 1 

dx fg x, x  1,2; 
0 0 

1 

f f(x)g•(x) dx = P,. 
0 

These  func t ions  will now be used to define the response  func t ions  
Ai()t) and Bj()t) in the fol lowing manner .  

f(A),0--<A < I; 
Al()t) = [f() t  - 1), 1 ----- )t -< 2. 

This defines Al() t )  on ~r(Al). 

A2() t )  = f f ( X  - 2),  2 < )t --< 3; 
[ f ( ) t  3), 3 < )t --< 4. 

This defines A2(,X) on o(A2).  

BI()Q = ~go()Q, 0 <-- ~ < 1; 
I.go()t - 2), 2 < )t --< 3. 
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This defines Bl()t) on o'(B~). 

Bz(A) = ~ g o , ( A  - 1), 1 ~ A ~ 2 
[go()~ - 3), 3 < )t --< 4 

This defines B2()0 on o-(B2). 
One can now calculate and see that the quantum probabilities are 

the required conditional probabilities. For example, 

1/4 [foXf()t) d)t + f12f()t -1)  d)t ] 
Prob[Al()t) = 1])~E~r(A1)] = 2 

1]4 fo d~t 

1/2 + 1/2 
- 1/2 = PA,. 

A typical calculation for the joint distributions goes like this. Notice 
that tr(A1) (7 o-(B2) = [l, 2], so 

Prob[Al()Q = B2(A) = ll)~e~r(A1) N o'(B2)] = 

1/4 12 f()~ - 1)g0,()~ - l) d~ 
./1 - Po' = Pad32. 

114 f2  d)t 

In the minimal model each particle is targeted to be responsive to 
exactly one analyzer position. One can do better than that. I believe 
the best one can do, in this setting, without letting in enough ap- 
paratus to derive the Bell inequalities, is captured by the maximal 
model which ! shall proceed to outline. It is motivated by the 
following reflections. The Wigner version of the Bell-inequalities 
makes plain that the deviation from quantum mechanics comes from 
the assumption that all the response functions (in my terminology) are 
defined for all ~. For this leads to there being well-defined multiple 
distributions, like PA1A~BjI~ 2 which are never well-defined in quantum 
theory itself and from which the Bell inequality follows immediately. 
(For this way of viewing Wigner's proof see my (1974).) It can happen, 
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however,  that distributions like PA1A2B 1 are  well-defined quantum 
mechanically, even though A1 and A2 are incompatible. For  instance, 
if A1 were strictly correlated with B1, then one would have that 
PA1A2B~ = PA2BI" Hence  the best one can have, without presupposing 
something in direct conflict with quantum mechanics,  is that three of 
the four response functions may be defined for certain measurable 
sets of )t (but not all four at once). This is the guiding idea for the 
m a x i m a l  m o d e l .  

To construct  it suppose that, as before,  L is [0,4] and p is the 
uniform distribution. Specify the categories as follows: 

o-(A1) = [0, 1) U (2, 41 
o-(A2) = [1, 2] u (2, 4] 
o(Bl )  = (2, 3] U [0, 2) 
o-(B2) = (3, 41 U [0, 21. 

Using the step functions f, g6 introduced for the minimal model, 
define the response functions as below: 

A1(A) = 
/ ( x ) , o - < x  < 1 
g o O t  - 2), 2 < A -< 3 
go,Or - 3), 3 < A -< 4 

A 2 ( A )  = 

f(A - 1), 1 -< X -< 2 
g o ( A . - 2 ) , 2 < X - < 3  
go(A - 3), 3 < A -< 4 

B ~ ( X )  = 

f ( A - 2 ) , 2 < A  -<3 
g0(X), 0--< A < 1 
g o ( A  - 1), 1 --< A -< 2 

B 2 ( , ~ )  = 

f ( A - 3 ) , 3 < A  --<4 
g0,(A), 0 -< A < 1 
g o ( A  - 1), 1 --< A -< 2. 

Notice that each response function is defined on exactly three out of 
the four  unit subintervals of [0,4] and, symmetrically, each A has 
exactly three out of the four response functions defined on it. One 
can now readily calculate the appropriate conditional probabilities 
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and see that, as required, they yield the probabilities prescribed by 
quantum mechanics. For instance, 

Prob[Bl(),) = 1]hecr(Bl)] = 

1/4[f;I(X-2)dX+folgo(X)dX+f2go(X-1)dX] 

= 1/2+ 1/2+ 1/2 
- 1 / 2  = P B , .  

3 

And, since or(A0 ~1 or(B2) = [0, 1) U (3, 4], 

Prob[A10t) = B 2 ( ) t )  - -  llAecr(A0 f'l or(B2)] = 

1/4[fo' y(X )go,(x ) dx + f; f ( ~ t  - 3 ) g o , ( ~ t  - 3) dA] 
1/4[fo' dA + f34 dX] 

_ Po'  + Po'  = Po'  = PA~B2. 
l + l  

There are prism models other than the maximal and minimal ones 
displayed above. It would be useful to have a systematic classification 
of them, which I do not have. Rather than produce any more, let me 
close the discussion of them with the reminder that they all come 
from the fundamental assumption that no system is capable of enter- 
ing into a successful measurement interaction for every observable. 
Thus when we come to calculate probabilities as relative frequencies 
we should not employ the formula 

Prob[A = x] - number of systems measured where A = x is found 
total number of systems measured 

Rather we want to calculate according to this formula, 

Prob[A = x] = 

number of systems measured where A = x is found 
total number of systems where a successful A-measurement is possible" 
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This latter formula results in the conditional probabilities of the prism 
models, and these, as we have seen, give the quantum mechanical 
correlations in a manner both realistic and local. 

4. S Y N C H R O N I Z A T I O N  M O D E L S  

I have emphasized that at the root of the Bell results is the assumption 
that the observables (corresponding to the analyzer positions) be 
treated as random variables with respect to the h-density, p. (In the 
finite frequency situation considered by Stapp (1971), p is simply the 
finite relative frequency measure.) Locality adds the requirement that 
these random variables be stochastically independent. The prism 
models avoid all this by restricting the domains of the response 
functions, so that only certain conditional distributions of them are 
well-defined. Conditional independence is preserved. The literature 
contains arguments, pro and con, as to whether stochastic in- 
dependence is really necessary for locality to hold, in the intuitive 
sense of no action-at-a-distance. (See, for instance Clauser and Horne 
(1974) and Clauser and Shimony (1978), pro, and Suppes and Zanotti 
(1976), con.) In this section I want to suggest a specific sort of model, the 
synchronization model, where independence breaks down but where 
locality clearly seems to hold. 2 

The motivating idea is to consider what happens in a correlation 
experiment when particles in both wings have already passed their 
respective analyzers. In the case of ideally efficient detectors, one 
might suppose that both particles would be detected, giving rise to a 
coincidence count. But this supposition may easily fail. For the 
particles may be delayed differently in passing through their analyzers 
or in the subsequent journey to the detectors so as to be significantly 
retarded relative to one another, and thus they may fail to produce 
counts that are in coincidence. I shall refer to these various pos- 
sibilities by saying that the particles are not synchronized. Whether or 
not particles are synchronized after passing their respective analyzers 
may well depend on the relative orientations of the analyzers. Thus it 
makes sense to introduce a coefficient of synchronization as follows: 

C0(h) = the probability that a pair of particles of type h 
will give rise to a coincidence count when the 
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A-analyzer is in its ith position, and the B-analyzer 
is in its jth position, given that both particles do 
pass their respective analyzers: 

Suppose, now, that the response functions are defined for all )t. 
Then we can introduce probabilities as follows: 

PA(X, i)  = 

PB0t, j )  = 

the probability for a count in the A-wing, for an 
A-particle of type )~, when the A-analyzer is in 
its ith position. 
the probability for a count in the B-wing, for a 
B-particle of type )t, when the B-analyzer is in 
its jth position. 

P A B ( ~ , i , j )  = the probability for a coincidence count when a 
pair of type )t is emitted and the A and 
B-analyzers are, respectively, in positions i 
and j. 

We have that 

P A ( ) t ,  i )  = A~()t)  and PB()t, j) = Bi(,~). 

Stochastic independence requires that 

PAB()t ,  i, j )  = PA()t ,  i) " PB()t ,  j )  = A~()t)  . Bi ( ) t ) .  

However,  taking synchronization into account, it would seem more 
reasonable to suppose that 

P ae(  h, i, j )  = A i (  )t ) " B i (  )t ) " Cij( )t ). 

By a synchronization model, I mean one in which this last equation 
is satisfied for Cij()t) not identically 1. Such a model must satisfy 

PA, = f A i ( ~ ) p ( ) t )  d)t = 1/2, 

PB i = f Bi(h)p(h) dh = 1/2 and 
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P A i B j  = f Ai(A)Bi(A)Cii(A)P(A) dA. 

(The in tegra t ion  is o v e r  the  whole  A-space  L.) 
I t  is no t  difficult to c o n s t r u c t  synch ron iza t ion  models .  Us ing  the 

dev ices  of  the p reced ing  sect ion,  there  is an espec ia l ly  s imple  w a y  to 
do so. Acco rd ing  to this way ,  there  are  two cases  to cons ide r ;  in bo th  
cases  A is s u p p o s e d  to be  un i fo rmly  d is t r ibuted  on [0, 1]. 

Case 1: Po,<Po. 

S u p p o s e  tha t  

Ai(A) = f(A) fo r  i = l, 2; 

Bi(A) = go(A) for  j = 1, 2; 

Cn(A) = C21(A) = C22(A) = 1 for  all A; and 

C~2(A) = go,(A) for  all A. 

Then  

fo' fo' Ai(A)Bj()t)Cij(A) dA =- f()~)go(h) dA = Po = PA,Bj, 

for  (i, j) = (1, 1), (2, 1) and (2, 2). 

And  

1 

f A~()~ )B2(A )C~2(,~ ) dA 
0 

1 1 

= f f(A)go~.A)go,(h) dA = f f(A)go,(A) dA = PA,B2 
0 0 
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Case 2: Po < Po'. 

Suppose that 

A~()t) = f(A) for i = 1, 2; 

Bj(~t) = go,()t) for  j = 1, 2; 

C11(A) = C21(A) = Cz2(~) = go(A) for  all A ; and 

C12(A) = 1 for  all )t. 

Then 
1 1 

f A,(x  C,ja dA = f f(A )go,()t )go(A ) dA 
0 0 

1 

= f f(X)go(A) dA = Po = PAiBj~ 

0 

for (i, j) = (1, 1), (2, 1) and (2, 2). 
And 

1 1 

f A,(A)B2(A)C12(A) dA = f f(A)go,(X) dA = Po' = PA,B2. 
0 0 

Hence,  in each case, the posited synchronizat ion model gives the 
quantum mechanical  probabilities. 

5.  C O N C L U D I N G  R E M A R K S  

The prism models  and the synchronizat ion models  show that the 
probabilit ies found in any correlation exper iment  designed to test  the 
Bell inequalities can be accounted for  in several  different ways,  
without recourse  to nonlocal mechanisms  or processes .  Of  course,  it 
may  well turn out that the machinery  of these models  is itself subject  
to experimental  test  and that it will be disconfirmed. For  example,  
very  highly efficient exper iments  - of the sort  suggested in Sec. 7.2 of 
Clauser and Shimony (1978) - may  be able to rule out at least some of 
the possible pr ism models.  Likewise,  experimental  data on transit  
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t imes and  re t a rda t ions  may  show that  the requ i red  coefficients of 
s y n c h r o n i z a t i o n  are no t  r easonab le .  I t  is p rec i se ly  in order  to genera te  

this sort  of cr i t ic ism and  d i scuss ion  that  I set out  these  ideas here.  At 

this stage, however ,  one  thing seems clear,  and  no t  acknowledged  
well  in the r ecen t  l i terature.  I t  is that  the Bel l - type  a rgumen t s  and  the 
expe r imen t s  which  suppor t  them c a n n o t  be  s t ra igh t forward ly  under -  

s tood as a rgumen t s  against ,  or expe r imen ta l  r e fu ta t ions  of, locali ty.  A 
great  deal more  than  that  is invo lved ,  and  it is ent i re ly  poss ib le  that  

local i ty  will su rv ive  this crit ical  e x a m i n a t i o n  and that  o ther  pr inc ip les  
- like the r a n d o m  var iab les  f r a m e w o r k  - will go by  the ways ide  

ins tead.  
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Similar criticisms have been expressed by Lochak (1976) and by Bub and Shiva (1978). 
The best known hidden variables theory, that of de Broglie, does not employ this 
framework, and the group working on de Broglie's ideas seem quite clear in their 
rejection of it (1976). In work not yet published I have shown that the Bell (or, 
equivalently, the Clauser-Horne) inequalities hold if and only if the observables of the 
experiment can be represented as random variables (over a common space); i.e., if and 
only if there is a joint distribution function for all the observables (simultaneously). 
Thus the Bell results and the framework of random variables stand, or fall, together. 
2 The central point of my (1980) is to show, in considerable detail, why physical locality 
does not require stochastic independence at It. The reader will also find there a different 
construction of deterministic synchronization models, and a discussion of one way to 
calculate the maximal prism model probabilities from experimental counting rates. 
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